
Universitat Politècnica de Catalunya

Master in Artificial Intelligence

Computational Intelligence

Binary classification

of Gaussian data

Authors:

Miquel Perelló Nieto

Marc Albert Garcia Gonzalo

Date:

January 21, 2013

Contents

1 Introduction 2

2 The normal distribution 3

2.1 Motivation . 3

2.2 Central limit theorem . 4

2.3 Definition of normal distribution 5

2.4 Two normally distributed classes 7

2.5 Multivariate normal distribution 8

3 Classification methods 10

3.1 Bayesian discriminant functions 10

3.1.1 Linear Discriminant Analysis 11

3.2 Artificial Neural networks . 12

3.2.1 Multilayer perceptron . 12

3.2.2 Single-layer perceptron . 13

3.2.3 Network complexity . 16

3.3 Support Vector Machine . 18

3.3.1 Kernels . 19

4 Comparison of methods 22

4.1 Adult heights . 22

4.1.1 Definition . 22

4.1.2 Methods . 23

4.2 Different priors . 24

4.2.1 Definition . 24

4.2.2 Methods . 24

4.2.3 Experimentation . 26

4.3 Different priors with correlation 27

4.3.1 Definition . 27

4.3.2 Methods . 27

4.3.3 Experimentation . 27

4.4 Fisher’s Iris dataset . 30

4.4.1 Definition . 30

4.4.2 Methods and Experimentation 31

5 Conclusions 33

1

1 Introduction

The idea of this project is to evaluate the performance of different Computa-

tional Intelligence algortihms to classificate normally distributed data.

We will start by defining the normal distribution, and by explaining the mo-

tivations to use it, mainly the central limit theorem. An advantage of using

normally distributed data, is that there exist optimal classification methods.

We will introduce these optimal classification methods, specifically the Linear

Discriminant Analysis (LDA) and the Quadratic Discriminant Analysis (QDA).

We we see their differences, and in which circumstances they are optimal.

Then, we will move to Computational Intelligence (CI) methods. There are

different definitions for what is CI. One of them is based on the idea that the

methods do not try to be optimal, but try to achieve good results, in an efficient

and feasible way. Another idea is more based on the biological inspiration of the

methods. The CI methods studied are the Artificial Neural Networks (ANNs),

specifically the Multilayer perceptron (and the special case of the Single-layer

perceptron, where no hidden network is present), and the Support Vector Ma-

chines (SVMs). While the biological inspiration of the latter is lacking, it can

fit in the first definition of CI, and it can even be seen as a special case of ANNs,

so it is commonly considered part of Computational Intelligence.

For all the methods, we see a mathematical definition of them, as well as some

intuition on how they work, and what they optimize. We briefly discuss about

the architecture of ANNs, and about the kernels of SVMs, and see how they

can affect the special case of normally distributed data, which is the subject of

this article.

After the review of all methods, a practical comparison of methods is presented,

focusing on specific cases, and how each suitable method performs in that case.

We complement the theorical overview of the methods, and how they perform for

that exact problem, with empirical experiments, which evaluate of conclusions

in practice.

2

2 The normal distribution

2.1 Motivation

In statistics, the normal distribution is one of the most (if not the most) popular

ones for approximating unknown distributions. This is for both, the central limit

theorem, described later, and because the believe that it apears in a large variety

of situations in the nature and social scenarios, being this arguable.

Because of this popularity, many work has been done, assuming data was gen-

erated by a normal distribution. Among these works, it is worth mentioning

the linear discriminant analysis and the quadratic discriminant analysis, which

are classifiers, based on Bayesian probability, and assuming that the data is

generated by a normal distribution.

3

2.2 Central limit theorem

There are different ways to define the central limit theorem, and different vari-

ations of it. One way of defining it is next.

Given a large number of samples taken from an independent and identically

distributed (i.i.d) random variable, the mean of the samples is distributed as a

normal distribution.

To illustrate this definition, we will use an example. Imagine rolling a fair dice,

where the probability of each of the six possible outcomes is the same, and the

result from each roll is independent from the rest. Now, consider rolling the

dice ten times, and averaging the result. The result could be for example 3.3.

We repeat the experiment again, and the result could be 3.7. The central limit

theorem states that, if we repeat this experiment a large number of times, the

distribution followed by the results will be the normal distribution.

4

2.3 Definition of normal distribution

A continuous random variable X is normally distributed, written X ∼ N (µ, σ2),

when its probability distribution function is:

p(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (1)

where µ is the mean and σ2 is the variance of the distribution.

It can be shown, how the expectation of the variable, is equal to the mean of

the distribution:

E[X] =

∫
R
xp(x)dx = µ (2)

And how the expectation of the variance of the variable, is the variance of the

distribution:

E[(X − µ)2] =

∫
R

(x− µ)2p(x)dx = σ2 (3)

A special case of the normal distribution is know as the standard normal distri-

bution, where µ = 0 and σ = 1.

Because of the properties of the normal distribution, we can express any normal

distribution, as a linear function of the standard normal distributions:

N (α, β) = α+ βN (0, 12) (4)

The probability density function of the standard normal distribution is defined

by:

p(x) =
1√
2π
e−

1
2x

2

(5)

Figure 1 shows a plot of the standard normal distribution.

5

4 3 2 1 0 1 2 3 40.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 1: Univariate normal distribution with mean 0 and standard deviation

1

6

2.4 Two normally distributed classes

The idea of this project is to analyze binary classification methods, and their

relation with normally distributed data.

A binary classification problem pretends to predict a hidden variable for a partic-

ular instance, given that the variable was available before, and a generalization

model could be created, which predicts the hidden variable as a function of the

other available data. For example, given the size, density, and shape of tumor

cells, predict if it is benignant or malignant, given some cases where it was

known.

For the purpose of this project, we will assume that different classes in a dataset,

have separate normal distributions, with different mean. If the classes were

generated from the same normal distribution given the available dataset, the

problem of classification would not be feasible.

Next, we can see an example of two different classes, each following a normal

distribution. Class A has µ = −1 and σ = 1. Class B has µ = 2 and σ = 2.

In the plot, it can be seen the real distribution of a sample of 1000 instances

per class, generated from the normal distribution. And also, the plot of the

theoretical normal model for the same distributions.

−4 −2 0 2 4 6 8
0

10

20

30
Practical Distributions

Class A

Class B

−4 −2 0 2 4 6 8
0

0.2

0.4

Theoretical Distributions

Class A

Class B

Figure 2: Two normally distributed variables, representing different classes

7

2.5 Multivariate normal distribution

In the previous definitions, we have considered the case of a single normally

distributed variable. But in a more general case, we can consider a set of

random variables which are all normally distributed.

A continuous n-variate random vectorX = (x1, ..., Xn)T is normally distributed,

written x ∼ N (µ,Σ), when its joint probability distribution function is:

p(x) =
1√
|Σ| n
√

2π
e−

1
2 (x−µ)

TΣ−1(x−µ) (6)

Where µ is the mean vector and Σ is the (real symmetric and positive semi-

definite) covariance matrix.

Next, we present an example of two dimensional normally distributed features.

In the example, the covariance betwen features is equal to zero.

8

−2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

10

12
Two normally distributed features

x0

x1

Class A
Class B

−2 0 2 4 6 8
0

5

10

15

20

25

30

35

feature x0

x0

Class A
Class B

0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8

10

12
feature x1

x1

Class A
Class B

Figure 3: Two different classes with normally distributed features. Bottom and

right, there are the one dimension projections of the features

9

3 Classification methods

3.1 Bayesian discriminant functions

Classification methods based on Bayesian discriminant functions, like Linear

Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA),

base their predictions depending on the probability of the class to be be gener-

ated by the distribution of one class or the other, given an individual. This can

be represented with a equation using the Bayes theorem like:

p(yk|x) =
p(x|yk)p(yk)

p(x)
(7)

where yk is the class, and x is the individual to predict. Note that the normalizer

p(x) is not relevant to determine the class, and can be ignored.

So, we will predict a new instance to be of class y = 0 when p(y = 0|x) > p(y =

1|x) for a binary classification problem, with classes 0 and 1. The region in the

space where p(y = 0|x) = p(y = 1|x) is called the decision boundary.

This probability depends on one side on the prior probability of each class, p(yk),

and in the other on the probability distribution p(x|yk). This is, the probability

of the individual, given that we know the class. For this family of classification

methods, it is assumed that this probability is normally distributed, so it is

generated from the distribution defined in equation (1) or in a more general

case of more than one dimension, is generated from (6).

Assuming that p(x|yk) is generated from a normal distribution, then, it can be

proved that the previous equation can be expressed as:

p(yk|x) = ln p(yk)− 1

2
(ln |Σk|+ (x− µk)TΣ−1k (x− µk)) (8)

where µk is the mean of the distribution of the class k, and Σk its covariance

matrix.

So, we can observe how the classification depends, together with the values

of the features of the individual to predict, on the prior, the mean and the

covariance matrix of the classes.

Previous equation correspons to the quadratic discriminant function, used for

quadratic discriminant analysis.

10

We can use the definition of Mahalanobis distance to get some intuition from

that equation. Mahalanobis distance is defined as follows:

dM(x,N (µ,Σ)) =
√

(x− µ)TΣ−1(x− µ) (9)

Intuitively, we can say that Mahalanobis distance is a measuare on how likely

an individual has been generated by a specific normal distribution. We can see

how the Mahalanobis distance appears squared in the quadratic discriminant

function, and the other terms are logarithmic, so this can give an intuition that

the Mahalanobis distance of the individual to each of the distributions, is a

fundamental factor to predict the class.

To perform the classification based on that definition of p(yk|x), the best possi-

ble test is the likelihood ratio test. For the binary classification case, this method

uses the quotient p(y1|x) / p(y0|x) to decide the predicted class.

It can be proved, how the quadratic discriminant analysis is the optimal method

for classification of two classes, if the generating function of the data is an actual

normal distribution function.

3.1.1 Linear Discriminant Analysis

Linear Discriminant Analysis arises in the special case when we assume that the

classes have the same covariance matrix Σk = Σ ∀k.

If we asume that the distribution function of each class is defined by equation

6, and let p(yk) be the prior probability of class k, it can be shown how the

quotient of the quadratic discriminant function for the classes can be simplified,

and resulting in this equation:

g(x) = αTk x+ βk

αk = Σ−1µk, βk = −1

2
µTkΣ−1µk + ln p(yk)

(10)

This is the linear discriminant function, used in the linear discriminant analysis.

As specified in the name, and it is clear to see it in the equation too, this function

is linear, and the decision boundary produced is a line in the two dimensional

space, a plane in three dimensions, and a hyperplane in higher dimensions.

As LDA is a special case of QDA, assuming that the covariance matrices of

the two classes are equal, LDA is the optimal classification method when this

assumption is true.

11

3.2 Artificial Neural networks

Artificial Neural Networks (ANNs), are mathematical models, inspired by the

biological neuron networks of the human brain. They were first introduced by

McCulloch and Pitts in the 1940’s, and after different periods of interest and

abandonment by the community, they experimented a renewed interest in recent

times, mostly because of the specification of the Multilayer Perceptron (MLP),

and the introduction of the backpropagation learning algorithm.

An Artificial Neural network is composed by a set of artificial neurons or units,

and the connections among them. An artificial neuron computes a weighted sum

of its input signals, or variables, and produces an output, which can be directed

to other units (sometimes even the same), or as the output of the neural network.

To the result of the weighted sum, it is applied an activation function, usually

a sigmoid function, because of their smoothness and asymptotic properties.

y = g(θTx) = g

(
n∑
i=0

θixi

)
(11)

where y is the output, g is the activation function, n the number of inputs,

θ the weights vector, and x the input vector. Note that the artificial neuron

has a treshold to define whether the neuron is activated or not (wheter the

output is positive or not), which will be expressed as the independent term in

the equation. But for simplicity, this treshold will be represented by a weight

θ0, and an associated synthetic input variable, which by standard will be always

1.

There are different kinds of ANNs depending on their architecture. The ar-

chitecture of a neural networks corresponds to the graph which represent the

connections among the units. There is a broad classification, distingusihing

feed-forward networks, if the graph contains no loops, or recurrent networks,

otherwise.

3.2.1 Multilayer perceptron

The Multilayer perceptron (MLP) is a feed-forward artificial neural network,

where the neurons are organized in layers, and where the neurons of each layer

have unidirectional connections with the neurons on the next layer.

The input variables are usually considered a layer, named the input layer. The

last layer, which corresponds to the output of the system is named output layer.

While the layers in between are named hidden layers.

12

The most common method for minimizing the error of the model, given a train-

ing dataset is called backpropagation. It is difficult to describe it in detail, but

we will give some intuitions on how it works.

Once we defined the structure of the MLP (number of hidden layers, and number

of units in each layer), we initialize the weights to non-zero random values.

Then, the error for an instance in the trainig set is calculated. This is done by

computing the prediction for the x input vector, after computing the result of

each unit in the model. Once we have the result in the output layer, we compare

it to the real value y of the response variable for that instance. The difference

is a possible way to compute the error.

Then, the idea is performing the same computation as for calculating the result

on each unit, but backwards, propagating the error to all units given the weights

in the connections. This way, the weights can be adjusted to minimize the error,

using the optimization algorithm of choice.

It has been proved [6] and [5], that given some conditions, a neural network

is an approximation to the Bayesian discriminant function. These conditions

include:

• The network is trained with infinite number of examples

• The MLP is optimized to global minima, not a local minima

• There are enough units in the hidden layers to represent the posteriors

• In case the problem is not binary, a 1-of-C encode is used1

The problem here, is that the two first conditions are not feasible of practive.

Obviously, the number of training examples will be finite. And in most cases, the

optimization of the MLP will be NP-complete. So, for real-world problems, it is

not guaranteed that the MLP approximates the Bayesian discriminant function,

but with a large number of examples, and good optimization methods, we can

expect that the result is somehow approximate.

3.2.2 Single-layer perceptron

A special case of multilayer perceptron is the single-layer perceptron. That is

when the number of hidden layers is zero. See in the figure the architecture of

the network.

1 1-of-C encode has an output unit for its class, and one 1 and the rest 0s for each case,

where the unit with the one specifies the class of the output

13

x1

x2

n1 y1

w0

w1

w2

Figure 4: Single layer perceptron, with two input and one output variables

We will also use the logistic function as the activation function, which is indeed

the most popular choice. The logistic function is defined as follows:

gθ(x) =
1

1 + e−θTx
(12)

The usual cost function to be used with the logistic function is the next, in order

to make it convex, and suitable for optimization:

Cost(hθ(x), y) =

{
− log(hθ(x)) if y = 1

− log(1− hθ(x)) if y = 0
(13)

and their graphical representations are next:

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

12

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

12

Figure 5: Logistic function costs, for y = 0 and y = 1 respectively

The cost can also be expressed in the next single equation:

Cost(hθ(x), y) = −y log(hθ(x))− (1− y) log(1− hθ(x)) (14)

The logistic equation, applied to the result of the neuron, changes how the

computation of the cost of the elements in the next way. Consider first that

we do not use the logistic function as activation function, and instead, we use

the identity function (which is equivalent to not using an activation function).

Then, the classification is simply based on θTx, where θ is a vector orthogonal

14

to the decision boundary. The dot product θTx can be seen, as calculating

the length of the projection of the instance x on this θ vector. Note that this

length is signed, being positive when the projection occurs in the direction of

the vector, and negative when it is in the opposite direction. See the figure 6

for a graphical representation of the projection.

Figure 6: Representation of the projection of a vector over another

In practice, what the classifier is doing, is to find a decision boundary for what

the elements of one class are in one side, and the elements of the other class in

the other. So, it finds the parameters θ that applying the dot product to each,

they returned a signed value, where the sign represents in which side they are,

and the absolute value represents how far they are from the decision boundary.

Considering this, it is important to note, that for the cost function, a well

classified element very far from the decision boundary, can be equivalent, to

many missclassified elements close to the decision boundary. But this does not

sound as a good thing to happen. Then, if we use the logistic function as the

activation function for the neuron, what we are doing is changing this behavior.

The logistic function, is a derivative function, which assymptothically grows to

one for positive numbers, and to zero for negatives. This way, the weight of

an element well classified, which is very far from the decision boundary, is not

significantly higher, that another which is closer. The algorithm, when using

the logistic function, will then focus on classifying properly all elements, instead

of classifying some elements very well, leaving others missclassified.

See the next figure, which ilustrate the growth of both, the logistic function and

the identity function.

Note that the Single-layer perceptron with an output variable, and the logistic

function as the activation function, is equivalent to the more popular algorithm,

logistic regression.

15

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.02.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
logistic
identity

Figure 7: Comparison of logistic and identity functions

3.2.3 Network complexity

The Single-layer perceptron is a lineal model. It performs the dot product of

the input variables with the weights, to it simply weigths them in a linear way.

Obviously using the logistic function for optimization, but its use is trivial for

prediction, as we will predict 1 when the result is higher than 0.5, which is

equivalent to predicting 1 when the result before applying the logistic function

is greater than zero.

So, the Single-layer perceptron can be directly compared because its complexity

with the LDA optimal method. Then, we could try to find the network archi-

tecture which generates a quadratic model, but first we should ask the question,

where the non-linearity of the network comes from? The problem is that it

does not come from the structure, or the layers. If we analyze the computations

performed by a unit again, we see how they are linear. And if the parameters of

the unit are the result of another unit, which are linear terms, combining them

in a linear way, will generate a linear result. So, no matter what the structure of

the network is, that with the direct computation of the model we obtain linear

models. The linearity then, comes from the missing part in this reasoning, the

activation function.

So, back to the original question again, can we generate a quadratic model with

a MLP? Not, with the logistic function as an activation function. We could

use a quadratic function as activation function, and we could get a quadratic

neural network, but it will optimize an uncertain function, and it will probably

16

be not useful. So, we will not consider quadratic MLP, to direct comparison

with QDA.

17

3.3 Support Vector Machine

Another classifier, is the Support Vector Machine (SVM), also known as the

maximum margin classifier. Support Vector Machines were invented by Vladimir

Vapnik. They come from the intuition, that among all possible decision bound-

aries for classifying between classes, the best one is the one with highest margin.

We define the margin as the double of the minimum distance, from the decision

boundary, to any of the instances in the training dataset.

Maximizing this margin, we obtain a better generalization, and it can be proved,

based on the VC dimension introduced by the same Vapnik2, that it reduces

the complexity of the model.

Figure 8: Representation of the SVM margin concept

There are two different versions of Support Vector Machines. The original one

introduced by Vapnik is known as the hard margin version. Hard margin means

that the margins defined by the Support Vector Machine can not be violated,

and the margins will be maximized under this contraint. A newer version of the

SVM was introduced later by the same Vapnik, and Corinna Cortes, known as

the soft margin version. In this case, the constraint preventing margin violations

was removed, and instead, violations of the margin are penalized in the cost

function. The degree of penalty of this violations is controlled by the C soft

2 Actually it was introduced by Vapnik and Chervonenkis, and VC dimension stands for

Vapnik-Chervonenkis dimension

18

margin parameter of the model.

min
θ, b

1

2
||θ||2 s.t. yi(θ

Txi + b) ≥ 1 (15)

where θ are the weights of the SVM, and xi and yi the features and the class

of the i-th element in the dataset (and the subject to condition applies to all

elements in it). This form is known as the primal form of the Support Vector

Machine (for the hard margin case). Using Lagrange multipliers, another form

can be obtained, which is better for optimization.

If we consider the soft margin case, a term ξi representing the violation of the

margin of each individual is added, and the sum of them is minimized, weighted

by the C soft margin parameter already mentioned. Then, the primal form of

the soft margin version is:

min
θ, b, ξ

1

2
||θ||2 + C

m∑
i=1

ξi

s.t. yi(θ
Txi + b) ≥ 1− ξi, ξi ≥ 0

(16)

The decision boundary obtained by the SVM method, is the one which max-

imizes the distance to the instances of each class. This minimized distance,

is the distance to a set of instances, which are the ones closer to the margin.

Removing one of these instances make the margin be able to move, to create a

higher distance to the rest of these closest points. But what is more important,

removing an instance which is farer than them, does not affect the margin. This

make the decision boundary, and thus, the whole model, to depend only in a

set of instances. These instances are the support vectors. This dependency on a

part of the dataset, has a direct relation on the lower complexity of the model,

mentioned before.

3.3.1 Kernels

The Support Vector Machine previously defined, creates the optimal classifier

based on the maximum margin concept, but always as a linear classifier. Using

kernels, transformations in the data are applied, so the linear classifier does

happen in the transformed space, an in the original space it is a non linear

classifier.

There are different kernels which perform different kinds of transformations, but

before explaining them, a property of the kernels is worth mentioning. When

19

we transform the data, different transformations can be done, and the result

can be a dataset in another space, which dimensionality is given by the number

of new features we calculate. Some of the kernels, perform transformations the

new dimensionality of which, is very large, or even infinite. But it can be shown,

how when using kernels in SVMs, the kernel transformations are always as part

of a dot product among them. So, what it is done is what it is called the kernel

trick, so the transformation is never explicitely performed, an instead, the result

of the dot product is calculated directly. The result of the dot product does not

depend on the dimensionality of the space where the separation is performed,

but instead, on the number of instances on the dataset.

Linear kernel This kernel is actually equivalent to the case when no kernels

are used. But defining it, the SVM model without kernels, can be seen as a

special case of the SVM with kernels, when a linear kernel is used. So, no

transformation is actually applied, and the data is discriminated in the original

dimensionality. Being a linear kernel, it can be directly compared, because its

complexity, with the LDA. Or in other words, in the case when the two classes

have the same covariance matrix, a SVM with linear kernel, should be able to

enough complex to discriminate the data in the optimal way.

Quadratic kernel This kernel is a special case of the polynomial case, when

the degree of the polynomial is 2. Because a quadratic model is the maximum

complexity to discriminate two classes with normal distributions, we will not

consider the rest of the polynomial kernels, and we will focus on the quadratic.

The complexity of this kernel is enough for classification of two classes generated

by normal distributions, in the case of different covariance matrices. So, it can

be directly compared with QDA.

The quadratic kernel is defined as follows:

k(xi,xj) =
(
xTi xj + 1

)2
(17)

Radial Basis Function (RBF) kernel Also called gaussian function, this

kernel makes the SVM classifying the elements in an infinite dimensional space.

The representation of this space in the original one, is that every instance in the

dataset creates a normal distribution, with the mean in its position, and with a

variance specified by a sigma (or gamma) parameter. The normal distributions

are in opposite directions for elements of different classes. We can think on this

normal distributions as pushing the element to classify in its direction, so, as

20

closer the element is of another of a specific class, it is pushed to be classified to

that class. Actually, because of the SVM theory, only the support vectors are

creating this effect in the space.

So, how transforming the space in a gaussian way relates to classifying gaussian

data? This concept of transformation sounds similar to what Bayesian discrim-

inant functions are doing, but first thing to note, is that as far as we know, the

RBF kernel implementations support a single sigma parameter for both classes.

So, this transformation, if applied just once per class, will not be able to discrim-

inate in a quadratic way, but in a linear way. But we are considering a single

transformation, which should be placed in the mean point of the distribution.

But instead, the kernel, is creating a transformation per support vector. So,

we can expect good results from this kernel, as the final transformation is not

expected to be very different from the one with center in the means, and the

variance of the distribution. Of course, if there is enough data, and the sigma

parameter is set to a good value. But the model is more complex, and with

a parameter to tune. So, while in other cases it can perform much better, for

normal distributed data, does not look like the best option.

The RBF kernel is defined as follows:

k(xi,xj) = e

(
− 1

2

||xi−xj ||
2

σ2

)
(18)

21

4 Comparison of methods

4.1 Adult heights

4.1.1 Definition

We will start with a simple real-world example. A popular example of normally

distributed variable is the height of adult humans for a specific gender. While

this affirmation is arguable, we will assume that it is true for this example.

So, for this classification problem, we will consider a dataset containing a single

feature, the height, and the class, male or female. Each individual represents an

adult person, and the distributions generating data for each class are normal,

with different mean, and the same variance. Priors of both classes will be

considered equal.

Next table summarises the information regarding the dataset. 3

Male Female

Number of instances 1,000 1,000

µheight 175 162

σheight 7 7

Table 1: Summary of the problem

130 140 150 160 170 180 190 200 2100.00

0.01

0.02

0.03

0.04

0.05

0.06
Female
Male

Figure 9: Adult height distributions

3Information taken from National Health and Nutrition Examination Survey (NHANES),

for adults in the United States

22

4.1.2 Methods

In this case, the appropriate Bayesian discrimination function is the linear dis-

criminant function, as there is just one feature, with the same variance for both

classes. Having only one variable, and equal priors for both classes, the linear

discriminant function can be simplified to the next:

p(yk|x) = −||µk − x||2 (19)

which will basically set the decision boundary in the mean of the means, or

graphically, where the two distributions intersect (at 168.5).

The single-layer perceptron, will make the predictions based on minimizing the

error from the logistic function. As the two distributions are the same, we can

expect to have the same instances in both sides, and the same instances crossing

the intersection of the distribution. So, the expected value is again the mean of

the means.

In the case of the Support Vector Machine (with linear kernel), we need to

consider the soft margin version, as the data is not linearly separable. Then,

as in the previous case, the expected number of violations would be the same,

considering the mean of the means, and the probability of finding an element in

any part of the distribution is the same, relative to that center. So, once again,

the expected decision boundary is the middle of the distributions.

23

4.2 Different priors

4.2.1 Definition

In this case, we will analyze a case, when the priors of each class are very

different, and how this affects the classification algorithms. We consider a case

where the priors are calculated based on the number of instances of each class

in the sample.

We define two different classes, in a bidimensional space, which are generated by

independent normal distributions, with different mean for both features, with

the same variance for both features of both classes, and with zero covariance

between features, for both classes.

Small Large

Number of instances 2 1,024

Prior 0.0019 0.9981

µ1 2 10

σ1 1 1

µ2 4 6

σ2 1 1

σ12 0 0

Table 2: Summary of the problem

4.2.2 Methods

As the covariance matrices are the same for both classes (in the real distribu-

tion, not in the sample distribution), we will consider only LDA as a Bayesian

classifier. We will compare this method with Computational Intelligence linear

methods, the Single-layer perceptron, and the Support Vector Machine with

linear kernel.

As we can see in the LDA equation, this method has the logarithm of the prior

in the independent term. This is telling that it will exist some bias toward the

class with higher prior. We expect this method to create a decision boundary

orthogonal to the line connecting the mean of the sample distributions, and not

far from the center, as the sample variance of both classes is the same. But we

also expect it to not be exactly in the center, but instead a little closer to the

smaller class, because as said, the method will subtly consider the priors.

24

In the case of the Single-layer perceptron, the result does not directly depend

on the mean or variance of the distribution. We are using this method with

the logistic regression, and the parameters of the model will be optimized to

minimize the error of missclassification of the instances, and to maximize the

reward of proper classification. As this problem is linearly separable, only the

latter will apply. So, as we explained before, the reward obtained by propely

classifying an instance, depends on its distance to the decision boundary. But

the logistic function makes this difference very small, and we do not expect it

to be significant.

But what it is important in this case, is that almost all elements of the dataset

are in the same side of the decision boundary. Only two individuals of one of the

classes are present. The reward the method will get from these two instances,

is not significant compared to the rest of the dataset, which is several orders of

magnitude higher. The effect of this, is that the method will work as a problem

of discriminating a class from another class will be almost invisible. So, we

expect a lot of variance in the method, and a linear boundary which ignores the

small class, as the number of elements in the large class grows.

In the case of the support vector machine, this difference on the number of ele-

ments in the training dataset, will be also significant. Support vector machine,

sets the decision boundary based on (hopefully) few elements of the dataset, the

ones which are closer to it. If we initially think on a dataset with a single ele-

ment of each class, placed in the mean of the real distribution, we could assume

that the decision boundary would be the line orthogonal to the one connecting

the points, and placed exactly in the middle. Now, we can consider generating

more individuals from only one of the distributions. Any element getting closer

to the initial decision boundary, than the previously existing, would become a

support vector, and would displace the decision boundary, on the direction of

the other class.

While the initial setup is not real, the previous example shows an intuition, on

why we could expect to find the decision boundary closer to the smaller class.

Given the two classes of the problem, there is a higher probability of having an

element of the larger class, closer to the decision boundary, so we can expect

the classifier to be biased towards the larger class.

Also, as the support vector machine classifier relies on instances of the dataset to

set the decision boundary, having very few instances in one class, will make the

decision boundary very sensitive to these few instances. Consider the extreme

case of a single sample for that class. It would surely be a support vector. And

the random process generating it, can make it have a value closer to the decision

boundary, or farer. The decision boundary will depend directly on this random

25

process, so, we can expect highest variance on the classifier, as the number of

instances in the smaller class decreases.

4.2.3 Experimentation

For the experimentation, we execute the three algorithms, LDA, Single-layer

perceptron, and SVM with linear kernel, with two different datasets.

In both cases, the samples of the largest datasets are generated randomly by the

normal distribution with the specified data. In both cases, the two instances

of the smaller dataset are set up explicitely. In the first case, there are placed

at a standard deviation of the mean, in both directions, parallel to the decision

boundary. In the second case they are also placed at one standard deviation of

the mean of the distribution, but orthogonal to the decision boundary.

Figures 10 and 11 show the graphical results of the experimentation.

0 2 4 6 8 10 122

4

6

8

10

12

14 LDA

0 2 4 6 8 10 122

4

6

8

10

12

14 SLP

0 2 4 6 8 10 122

4

6

8

10

12

14 Linear SVM

0 2 4 6 8 10 122

4

6

8

10

12

14 LDA

0 2 4 6 8 10 122

4

6

8

10

12

14 SLP

0 2 4 6 8 10 122

4

6

8

10

12

14 Linear SVM
small
large
dist means

Figure 10: Comparison of methods for the unbalanced priors problem

0 2 4 6 8 10 122

4

6

8

10

12

14 LDA

0 2 4 6 8 10 122

4

6

8

10

12

14 SLP

0 2 4 6 8 10 122

4

6

8

10

12

14 Linear SVM

0 2 4 6 8 10 122

4

6

8

10

12

14 LDA

0 2 4 6 8 10 122

4

6

8

10

12

14 SLP

0 2 4 6 8 10 122

4

6

8

10

12

14 Linear SVM
small
large
dist means

Figure 11: Comparison of methods for the unbalanced priors problem

26

4.3 Different priors with correlation

4.3.1 Definition

This is another example when the priors of each class are different. Like in

the example before the number of instances in one class is several orders of

magnitude higher than in the other. Otherwise in this example the classes are

generated from normal distributions, with different mean in each class for both

features, and with different covariance matrices.

We have generated 9990 points for the largest class and 10 for the smaller. All

instances have been randomly generated from the distributions specified in the

next table:

A B

Number of instances 9990 10

Prior 0.999 0.001

µA 0 0

ΣA 0.5 1

1 1

µB 5 -3.5

ΣB 1 -1

-1 0.5

Table 3: Summary of the problem

4.3.2 Methods

The covariance matrices are at perpendicular directions, and then we will see

the difference between LDA and QDA approach. We want to see also Single-

Layer Perceptron and a Support Vector Machine. Last one will use an RBF

kernel with a C = 9 and γ = 1/2.

4.3.3 Experimentation

The result, as we can see is that LDA expects the same covariance matrix for

both classes. In that case the huge number of individuals from the class A

results in imputing the covariance of this one to both classes. The blue ellipsoid

is representing this matrix. The red one is behind the points but in the LDA it

27

feature x0

fe
a
tu

re
 x

1
LDA

A

miss A

B

miss B

mean

feature x0

fe
a
tu

re
 x

1

QDA

A

miss A

B

miss B

mean

6 4 2 0 2 4 6
feature x0

6

4

2

0

2

4

6

fe
a
tu

re
 x

1

ANN

A

miss A

B

miss B

mean

6 4 2 0 2 4 6
feature x0

6

4

2

0

2

4

6

fe
a
tu

re
 x

1
SVM

A

miss A

B

miss B

mean

Figure 12: Fitting unbalanced data with different covariance matrix and none

diagonals.

must be the same form as the blue one. Then the decision boundarie is near to

Class B, because this class have 0.01 times individuals than Class B.

On the other side, QDA computes different covariance matrix and predicts Class

B in opposite direction. Once again the red ellipsoid is behind the points, in any

case it is expected to be with the same direction than the points. In oppositely

the blue one is pointing at 135 degrees. The second order hyperplane that it

generates cut the original plane in two sections creating three prediction areas.

The Single Layer Perceptron ties not miss-classify the samples, but at the same

time is . It makes to missclassify some points that are linearly separable. This

problem apears when the number of individuals is very different. It makes the

decision boundary to cross one of the classes.

28

The final case is the SVM with a RBF kernel. These classes are linearly sep-

arable, for that reason the value of C is not important. The γ in that case is

selecting more or less support vectors, it must be very large to start creating

problems in the boundary.

29

4.4 Fisher’s Iris dataset

4.4.1 Definition

This is a real example of morphological variation of Iris flowers of three related

species (there are fifty samples of each one). It was collected by Edgar Anderson

and it is commonly used to make discriminant analysis. Setosa is one of these

species and it is linearly separable from the rest. The other two species are

Versicolor and Virginica. These are not linearly separable and we will focus

on them. Note that the purpose is not to create a classifier but detect which

problems are in previous algorithms and their differences in one example.

The features of this dataset are the length and the width of both sepal and petal.

The covariances and means of each class is different and here is a summary for

each class.

ΣSetosa Sep. Len. Sep. Wid. Pet. Len. Pe. Wid.

Sepal Length 0.124 0.100 0.016 0.010

Sepal Width 0.100 0.145 0.011 0.011

Petal Length 0.016 0.011 0.030 0.005

Petal Width 0.010 0.011 0.005 0.011

~µSetosa 5.006 3.418 1.464 0.244

Table 4: Summary of Iris Setosa specie

ΣV ersicolor Sep. Len. Sep. Wid. Pet. Len. Pe. Wid.

Sepal Length 0.266 0.085 0.182 0.055

Sepal Width 0.085 0.098 0.082 0.041

Petal Length 0.182 0.082 0.220 0.073

Petal Width 0.055 0.041 0.073 0.039

~µV ersicolor 5.936 2.77 4.26 1.326

Table 5: Summary of Iris Versicolor specie

ΣV irginica Sep. Len. Sep. Wid. Pet. Len. Pe. Wid.

Sepal Length 0.404 0.093 0.303 0.049

Sepal Width 0.093 0.104 0.071 0.047

Petal Length 0.303 0.071 0.304 0.048

Petal Width 0.049 0.047 0.048 0.075

~µV irginica 6.588 2.974 5.552 2.026

Table 6: Summary of Iris Virginica specie

30

4.4.2 Methods and Experimentation

Since this example have three classes and classifiers we are going to use are

binary classifiers, the procedure would be to classify the linearly separable class

(Setosa), in the case it was not a Setosa we would classify the others (Versicolor

and Virginica). We will focus only on the second part with two approaches.

The first one is taking into a count all the classes, and the second one only with

two of them. This is because training a model one vs all can be harder than

training one vs one. We will see the difference for each algorithm considering

that.

The four algorithms we are going to use are LDA, QDA, ANN (concretely a

Single Layer Perceptron) ans SVM (with RBF kernel). About the features we

will use only the sepal and petal width because in that case they are one of the

best features to classify.

For the first case we want to analyse the Virginica vs the rest (One vs all). In

that case the covariance of Virginica is very different than the rest as a unique

class. And the number Virginica instances is half the others. For that reason it

is not convenient to classify with a LDA, the results will force a linear boundary

that will not fit the data. The QDA algorithm will see the difference in the

covariance matrix, making the boundaries fitting better the samples.

On the other side, if we focus in algorithmic modelling then is not important

which is the real distribution of the data. In that case the Single-Layer Percep-

tron will try to minimise the error as SVM. This will make that separable class

(Setosa) won’t affect the boundary. In the case of SVM is forced with a large C

parameter. It is trying to fit a hard margin, but in that case this is impossible.

In the second case we want to analyse the Virginica vs Versicolor (One vs one).

In that case the covariance matrix are so similar. Then the results of LDA and

QDA will be similar too. The boundary must be the optimal, but we do not

have a large number of individuals. This two algorithms are expecting to model

this data with this distributions. Then is expected that the future samples will

keep this distributions.

For the ANN and SVM case, the removed class is not important to separate

the two classes. This is because the removed samples do not create miss-

classifications. For that reason the boundary will be the same in the visible

side. It is true that the SVM with RBF kernel changes the boundary, but this

change is in the opposite side and do not affect this classification.

31

Sepal.Width

P
e
ta

l.
W

id
th

LDA

A

miss A

B

miss B

mean

Sepal.Width

P
e
ta

l.
W

id
th

QDA

A

miss A

B

miss B

mean

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Sepal.Width

0.0

0.5

1.0

1.5

2.0

2.5

P
e
ta

l.
W

id
th

ANN

A

miss A

B

miss B

mean

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Sepal.Width

0.0

0.5

1.0

1.5

2.0

2.5

P
e
ta

l.
W

id
th

SVM

A

miss A

B

miss B

mean

Figure 13: Example splitting Iris-virginica (B) with Iris-versicolor and Iris-

setosa (A)

Sepal.Width

P
e
ta

l.
W

id
th

LDA

A

miss A

B

miss B

mean

Sepal.Width

P
e
ta

l.
W

id
th

QDA

A

miss A

B

miss B

mean

1.5 2.0 2.5 3.0 3.5 4.0
Sepal.Width

1.0

1.5

2.0

2.5

P
e
ta

l.
W

id
th

ANN

A

miss A

B

miss B

mean

1.5 2.0 2.5 3.0 3.5 4.0
Sepal.Width

1.0

1.5

2.0

2.5

P
e
ta

l.
W

id
th

SVM

A

miss A

B

miss B

mean

Figure 14: Example splitting Iris-virginica (B) with Iris-versicolor (A)

32

5 Conclusions

The goal of this project has been to compare how different families of machine

learning techniques apply to the specific case of gaussian generated data.

The first thing to note, is that even if the normal distribution is very important,

and useful for modeling problems where a data model is required, assuming that

data is generated by the normal distribution, is a strong assumption, and should

be done carefully for any domain. If the hypothesis of gaussian data does not

hold true, using optimal methods for gaussian data, does not necessarily need

to be better than using other methods.

We have seen, how LDA and QDA are optimal for different cases. The first when

the distributions generating the data of each class have the same covariance

matrix, and the latter when they do not.

We have seen how both ANNs, and SVMs, have models which are constrained

to be linear, and that can be equivalent in complexity with LDA. And also,

in the case of SVMs, there is also the version with the quadratic kernel, that

compares to QDA. But there is no quadratic model in ANNs.

We have seen how each method optimizes the classifier in different ways. For

LDA and QDA, the distribution of the data is considered, and the solution is

calculated analytically. For ANNs, the error is minimized, using an activation

function to make the model non-linear, and to focus on classificating many in-

stances in any way, rather than to classify some of them very well, to compensate

many missclassified. In the case of SVMs, the problem is optimized to maximize

the margin between all elements of the classes (penalizing it if not possible).

We started with a very simple example, and shown how different approaches

will likely end up with the same result.

Then, we analyzed the case of different priors, and different number of samples

of each case, in a quite extreme case. We have seen how in this case, knowing the

real distribution is a big advantage, and how the error minimization approach

of ANNs does not perform as good as the other models in this case.

About the Fisher’s Iris dataset, we have seen in a real problem that Linear

Discriminant Analysis and Quadratic Discriminant Analysis when the data is

changed they easily change the boundaries. This is because these two algorithms

are based on modelling the data, expecting to fit the real model. And for that

reason they create the model using all available instances. In the other side,

Single-Layer Perceptron and Support Vector Machine are focused in the miss-

classification error. This makes the decision boundary less dependent in distant

33

instances and more in closest. That makes these algorithms more robust at

sample changes.

34

References

[1] Friedman, J., Hastie, T., Tibshirani, R. (2001). The Elements of Statistical

Learning.

[2] AK Jain, J Mao, KM Mohiuddin (IEEE computer, 1996). Artificial neural

networks: A tutorial.

[3] S Balakrishnama, A Ganapathiraju (Institute for Signal and Information

Processing, 1008)

Linear Discriminant Analysis - A Brief tutorial.

[4] Tristan Fletcher (University College London, 2009). Support Vector Ma-

chines Explained.

[5] Ricardo Gutierrez-Osuna (CSE@TAMU). CSCE 666 Pattern Analysis

slides

[6] D Ruck, S Rogers, et al. (IEEE Transactions on Neural Networks, 1990)

The Multilayer Perceptron as an Approximation to a Bayes Optimal Dis-

criminant Function

35

	Introduction
	The normal distribution
	Motivation
	Central limit theorem
	Definition of normal distribution
	Two normally distributed classes
	Multivariate normal distribution

	Classification methods
	Bayesian discriminant functions
	Linear Discriminant Analysis

	Artificial Neural networks
	Multilayer perceptron
	Single-layer perceptron
	Network complexity

	Support Vector Machine
	Kernels

	Comparison of methods
	Adult heights
	Definition
	Methods

	Different priors
	Definition
	Methods
	Experimentation

	Different priors with correlation
	Definition
	Methods
	Experimentation

	Fisher's Iris dataset
	Definition
	Methods and Experimentation

	Conclusions

