
OBJECT RECOGNITION - PRACTICAL SESSION, MAY 2013 1

Multiview Analysis
Miquel Perelló, E-mail: miquel.perello.nieto@est.fib.upc.edu

Abstract

This lab concentrates on experimenting with several of the characteris- tics of multiview analysis. In order
to simplify the problem we concentrate on pairs of images.

Keywords

projective transformation, SIFT descriptors, fundamental matrix

F

1 PROJECTIVE TRANSFORMATION

We want to retrieve the frontal image of the different books in the image. To achieve that, we are
going to create the projective transformation for each one to match a rectangle where each point
represents one of the vertexes of the book.

Fig. 1. - Some books on the desktop

For computing the projective transformation matrix we can solve the linear problem Mh = b,
First of all we get the matching points, next we can compute the values of the matrix M with the

linsolve function implemented in Matlab. This function expects an equation of the type A ∗X = B
for that reason in the code M = A and B = b

Listing 1. steps for computing the homography
startPoints = [y1 x1 ones(4,1)];
endPoints = [y2 x2 ones(4,1)];
[M, B] = computeMatrices(startPoints, endPoints);
h = linsolve(M, B);

miquel.perello.nieto@est.fib.upc.edu

OBJECT RECOGNITION - PRACTICAL SESSION, MAY 2013 2

h = [1 ; h];
H = reshape(h,3,3)’;

To compute the matrix H we need to create the matrix M and the vector B where M is a
8x8 matrix which corresponds to two rows for each two points matching, and B is a vector
corresponding to the right part of the equations for the same points.

Listing 2. computeMatrices
function [A, B] = computeMatrices(startPoints, endPoints)

A = [];
B = [];
for i = 1:size(startPoints,1)

s = startPoints(i,:);
e = endPoints(i,:);
A = [A ;

0 0 -e(3)*s(1) -e(3)*s(2) -e(3)*s(3) e(2)*s(1) e(2)*s(2) e
(2)*s(3);

e(3)*s(2) e(3)*s(3) 0 0 0 -e(1)*s(1) -e(1)*s(2) -e(1)*s(3)
];

B = [B ; 0 ; -e(3)*s(1)];
end

end

Once we have computed the matrix H we can create the new image with the initials projection.
The main idea is to create a white image with the desired dimensions, and for each of the pixels of
the image, we can compute the inverse transformation of this point and retrieve the corresponding
pixel from the initial image. We can do that because x′ = Hx and x = H−1x′.

Listing 3. creating the new image
hi = size(b,1);
le = size(b,2);
I2 = ones(hi,le);

index = 0;
for i = 1:hi

for j = 1:le
index = index+1;
xFinal = inv(H)*[i j 1]’;
xFinal = round(xFinal/xFinal(3));

if (xFinal(1) > 0 & xFinal(2) > 0 & xFinal(1) <= hiA & xFinal
(2) <= leA)
I2(i,j) = aGray(xFinal(1), xFinal(2));

else
I2(i,j) = 0;

end
end

end

Finally, if we execute all the steps for all the books, we can retrieve the frontal view of each
one. With these images is possible to read their titles.

OBJECT RECOGNITION - PRACTICAL SESSION, MAY 2013 3

TABLE 1
Projective transformation of four different books into a rectangular distribution points

2 FUNDAMENTAL MATRIX

We are going to compute the fundamental matrix with the equation x′Fx = 0 where x′ are the
points of the left image and x are the right ones.

First we need to select the matching points. In that case, this is done by selecting SIFT descriptors
from both images and matching them from one image to the other. For reducing the number of
matches we added a threshold (depending on the image it can be smaller or bigger). This removes
the matches that are not greater than distance(D1, D2) ∗ THRESH where D1 and D2 are the 128
SIFT descriptors of the two points.

Listing 4. computing sift descriptors and matches
[fa, da] = vl_sift(Ia);
[fb, db] = vl_sift(Ib);

[matches, scores] = vl_ubcmatch(da, db, 3.0);

Once we have the matching points, we can choose the desired number of points. In that
case I executed with two different number of points, in one case twelve and other with thirty.
Furthermore, we add a new dimension to the points with a one.

Listing 5. Selecting the best matches
numPoints = 12;
[value, index] = sort(scores);
startx = [fa(1:2,matches(1,index(1:numPoints))); ones(1,numPoints)];
endx = [fb(1:2,matches(2,index(1:numPoints))); ones(1,numPoints)];

Given that the dimensions of the image are 900 by 700 pixels, the next computations would
carry a lot of problems. For that reason we can normalise these values to be in the range [-1,1].

I constructed a transformation matrix for each image, adjusting the values within the min value
and max value of x and y. It must be better to adjust individually for each variable, but in this
example it was not necessary.

Listing 6. Normalization of the points
% normalization of startx

OBJECT RECOGNITION - PRACTICAL SESSION, MAY 2013 4

startMin = min(min(startx(1:2,:)));
startMax = max(max(startx(1:2,:)));

scale = (startMax-startMin)ˆ-1;
T1 = [scale*2 0 -1 ;

0 scale*2 -1 ;
0 0 1];

startx_norm = T1*startx;

% normalization of endx
endMin = min(min(endx(1:2,:)));
endMax = max(max(endx(1:2,:)));

scale = (endMax-endMin)ˆ-1;
T2 = [scale*2 0 -1 ;

0 scale*2 -1 ;
0 0 1];

endx_norm = T2*endx;

The next step is to compute the f vector. One way to compute is calculating the eigenvector with
the smaller corresponding eigenvalue for ATA.WhereAisaNx9matrixwhereeachrowisoneofthematches.

Listing 7. compute A matrix
A = coordinatesMatrix(startx_norm, endx_norm);

Listing 8. function coordinatesMatrix
function A = coordinatesMatrix(startPoints, endPoints)

numPoints = size(startPoints,2);
x1 = startPoints;
x2 = endPoints;
A = [x2(1,:)’.*x1(1,:)’ x2(1,:)’.*x1(2,:)’ x2(1,:)’ ...

x2(2,:)’.*x1(1,:)’ x2(2,:)’.*x1(2,:)’ x2(2,:)’ ...
x1(1,:)’ x1(2,:)’ ones(numPoints,1)];

end

Here we compute the eigenvector and select the first that corresponds to f.

[V, D] = eig(A’*A);
f = V(:,1);
F = reshape(f,3,3)’;

Once we have the fundamental matrix, we need to project into a rank 2 subspace, this is done putting
a zero in the smaller value of the diagonal of their singular value decomposition.

Finally we need to add the denormalisation from the first image, to the F and then from the F to the
second image.

Listing 9. projecting F onto the rank 2 subspace
[Q D R] = svd(F,0);
[Y I] = min(diag(D));
D(I,I) = 0;
F = Q*D*R’;

OBJECT RECOGNITION - PRACTICAL SESSION, MAY 2013 5

Fig. 2. Twelve matching points

% Denormalisation
F = T2’*F*T1;

With the fundamental matrix we can compute the lines for one image and the other.

Listing 10. computing the lines
startL = F*startx ;
startY = [-startL(3,:) ./ startL(2,:);

-(wi * startL(1,:) + startL(3,:)) ./ startL(2,:)];

endL = F’*endx ;
endY = [-endL(3,:) ./ endL(2,:);

-(wi * endL(1,:) + endL(3,:)) ./ endL(2,:)];

Here we can draw the computed lines and the matching points to see if the lines really cross the points.

Listing 11. drawing the lines and the points
imshow([Ia Ib],[]) ;
hold on ;

line(repmat([0 ; wi], 1, numPoints), endY, ’Color’, ’green’);
plot(startx(1, :)’, startx(2, :)’, ’ro’, ’MarkerSize’, 6);

line(repmat([wi ; wi*2], 1, numPoints), startY, ’Color’, ’blue’);
plot(wi + endx(1,:)’, endx(2, :)’, ’ro’, ’MarkerSize’, 6);

The result depends on the number of matching points, how can be seen in the final pictures.

REFERENCES

[1] Low, David G. ”Distinctive image features from scale-invariant keypoints.” International Journal of Computer Vision 60.2 (2004): 91-110.
[2] Kovesi, Peter, http://www.csse.uwa.edu.au/ pk/research/matlabfns/

OBJECT RECOGNITION - PRACTICAL SESSION, MAY 2013 6

Fig. 3. Epipolar lines for twelve matching points

Fig. 4. Epipolar lines for thirty matching points

	CARREL
	Conclusion
	References

