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Class 1 Class 2
Training data vs deployment data

The real-world is not static ‘

Model assumptions Sample 1 Sample 3
Uncertainty quantification

Consider the option to abstain ‘ ‘

Related tasks

cautious classification, active learning, semi-supervised learning, Sample 2 Sample 4
novelty detection, outlier detection, anomaly detection, online

learning. o 9

® o




Binary classification example

Binary classification problem with two features, Binary classification example
but generalises to arbitrary number of classes and  °] ©
dimensions. N

- A, B, and C are in dense regions 2]
- E and D are in low density regions
- B and E are in the decision boundary
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Two common classifiers

Post. prob. C; Logistic Regression

Minimization of

empirical risk. N
Focus on the *

performance in ,

regions of high

density. °

4 \¢ o Train. Class 1

Expect same data
distribution during N
deployment. S

Post. prob. C; SVM RBF (calibrated Platt's scaling)
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Interpretation of the posterior probabilities

- A |S Clearly from CIaSS 1 Post. prob. C; SVM RBF (calibrated Platt's scaling)
- Cisclearly from Class 2 °
- B, E and D are in the same issoline 0.5
- Several examples in B

- No examplesinD
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Adding an additional posterior probability (background)

We refer to the foreground CIaSS as the known Post. prob. C; SVM RBF (calibrated Platt's scaling)
training data, and background class the rest. °

- We are certain about B being ambiguous e
- We are uncertain about D

p(Ci|x) p(C2|x) p(b|x) ’
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Objective: Adapt an arbitrary classifier to provide familiarity

Post. prob. C; Logistic Regression Post. prob. of background Post. prob. of C;, C; and background

O Train. Class 1
@ Train. Class 2
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How to adapt the probabilities in theory

Base classifier: known posterior class probabilities

_p&If, fp(felf)

p(felf %)= Gl for ¢c=1,...,C
We want: foreground vs background posterior probabilities
pxlf)p(f) p(x|b)p(b)
ol lia 1 blx)=—"—""",
p(f1x) ) p(blx) 200

We only need the ratio between the previous probabilities
r(x) = p(f1x)/p(blx)

We obtain posteriors for all foreground classes and background class

_ p(felf,0)r(x) B
p(felx) = 1+ p(blx) = T+




A discriminative approach and synthetic data

Binary classification example
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Likelihood functions for C; and C,
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Likelihood functions

Synthetically generated samples in a hyperellpise
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Post. prob. foreground vs background

Post. prob. of synthetic data

Post. prob. C; vs C,

Post. prob. C; vs C, vs background

© Train. Class 1
@ Train. Class 2
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A familiarity approach and density estimation

- Estimate density of foreground (training data)
- Obtain relative density with respect to the maximum of foreground

relative densities of fand b

. (x)_ p(f’x) 1.0 0

= — g

i maxxp(x,f) 0.8 - /\/\ — g;(x)
p(b,x) 0.6 -
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0.2 A

With those, we can still obtain the familiarity ratio 0.0
r(x) = P(0lx) r(x) = qr(x)/qpx)

Obtain the new posterior probabilities

p(felf,x)r(x)
1+r(x)

p(felx) = p(blx) =

1+r(x)




A familiarity approach

Likelihood functions for C; and C;
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Classification with

Outlier detection

Cautious classification

confidence
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A familiarity approach and affine transformation

Relative density of the background as
a function of the foreground

qp(x) = (g r(x))

Parametric form with minimum and
maximum values.

pu(z) = (1 -2)u0) +zu(1)
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A familiarity approach and affine transformation

Other possible values

qp(x) = (g r(x))
p(z) = (1 —2)u(0) + zu(1)

Parameter space affine bias

Ca
/

autious cla

assificatior

1 with conf

dence

u(1)

@
&

0]l

0.25

utlier detec

0.75

1.0

0.8 |
0.6
0.4
0.2 A

0.0

1.0

0.8
0.6
0.4
0.2 A

0.0

1.0

0.8 1
0.6 1
0.4 1
0.2 A

0.0

relative densities of fand b

/\/\ — ot

\_

relative densities of fand b

— ge(X)
— p(X)

relative densities of fand b

@ = geX)
= gb(X)
u(1)
~u(0)




Results

Our tests with 41 multiclass datasets showed:

1. Significantly better performance in classification with confidence against a
SOTA method
2. Competitive results for outlier detection against two specialised methods

And it is equivalent to Chow’s rule to perform cautious classification



Conclusion

- Consider the model assumptions in real-world problems (some ML algorithms
make strong assumptions)

- The available data for training may be biased.

- We designed Background Check as a theoretical framework which can be applied to
multiple problems.

More details in:

M. Perello-Nieto, T. M. S. Filho, M. Kull and P. Flach, "Background Check: A General Technique to Build More
Reliable and Versatile Classifiers," 2016 IEEE 16th International Conference on Data Mining (ICDM), 2016,
pp. 1143-1148, doi: 10.1109/ICDM.2016.0150.
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